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Big Data (BD) Issues yy

« Characterise BD with big “N”, big “p” and big “t”
« Sampling error

Reduced by increasing the sample size

 Bias

Coverage bias - Big Data population is not the population
of interest

Self selection bias — are their views representative of the
“silent” population segments?

Representation bias — multiple representation

Measurement error — Are the data related to the concept
of interest?

Increasing the sample size does NOT reduce non-
sampling errors
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 Domain (e.g. crop) modelling

« Machine learning methods
— Decision Trees
— Artificial Neural Networks
— Support Vector Machines
— Nearest Neighbour
— Ensemble classifiers

» Statistical modelling

— Spatial-Temporal models
» Use “space” and “time” information

« Use in ABS modelling for satellite imagery and simulated

phone data
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Two-Step Approach —
Calibration and Prediction

Over-coverage, not relevant for inference

Use a sample to calibrate the
Big Data (treated as
“covariates”) using ground
truths/measurements

Calibrate using a linear model
with time varying coefficients —
Dynamic Model

Estimate parameters (using
Freguentist/Bayesian
approaches) Y, Z, e,
Predict the non-sampled { } - { } & +L }
values using the covariates

Inference
Population

Big Data
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The selectivity bias issue

 When the Big Data
population only intersects
with the inference
population, Big Data
covariates are missing
— Two problems

* Bias in estimating beta
« Covariates are missing

— Can we just ignore the
selectivity bias issue?
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Big Data bias and

statistical modelling
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Only observed RV available and no BD but only observed RV available

BD - challenging missing dataand - challenging missing data problem

missing covariate problems

Note: RV = Response variable from “ground truths”; BD = Big Data
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Inference on finite
population values

Sampling and missing data processes
can be ignored if “these processes are
not dependent on the unobserved
population values”
— Fulfilled if the training data set is
selected by probability sampling
— There is no missing data or the missing
data is “missing at random
Big Data process can be ignored if “this
process is not dependent on the missing
covariates”
—  This condition is difficult to check

— If condition not satisfied, modelling for the
missing covariates — a difficult task — will be
needed.

| When can selectivity be ignored} 74

Modelling the missing
processes

« 3 processes at play at time t, with reference to
the inference population
— Sampling process — |;= {0,1}
— Missing observation process, R,;= {0,1}
— Big Data process, R,;={0,1}
« Data on the censoring processing
— PW=Dataon l;and R;for | =1,.., t
— P,= Data on R;
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Data at time =t

Satellite imagery

Big Data

- reflectance data from 7
frequency bands from satellite
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- Statistical models require ground
truths/measurements

imagery
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Satellite Imagery — no under-

coverage (missing covariates) issues

Over-coverage, not relevant for inference

Inference
Population

Big Data

EVI=Gx

A D

Some Interesting observations
9 Vy

Enhanced vegetation index — EVI
plotted over the growing season

Wheat Sun Flower‘

(NIR — RED)

(NIR+ C1x RED — C2 x Blue + L)
L=1,C1=6,C2=7.5, and G (gain factor) = 2.5.
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* This Is where crop science comes in
—_ POSS]ble Covanate curves Enhanced vegetation index — EVI

plotted over the growing season
» Land surface temperature curve Wheat sun Flower
 Moisture curve

 Grow curves etc.
— Want to use the whole curve

— Need a method to pick finite points

« Functional Data Analysis
— Pick the points which explains most of the variation of the curve
» Functional Data Analysis
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The training data Models and accuracy

Distribution of EVI for Barley fields |:pr :| {[1 + exp (—Z;E Y, )]—1 }
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Data over time Dynamic models

Distribution of EVI for Barley fields
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&% The Algorithms

Dynamin Linear Model
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B=MB,+e
e; ~ independent N (0.E;)

A =

g, ~independent N (0.Q;)
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Dynamic Logistic
Regression Model
m;, ~ Ber(pj,),xj, ~ Bin(cj,,pj,)
Pjr = [1 + exp(_l'jﬂ! )]_l
Ye= HY,.1+& , ¥; 1 Z,
Hh~= ‘\'(YO*EYO)

g, ~ independent N (O‘Er)

Pr(m, =1) = [1 + exp(y—Z;;,"y,,)Tl = Py

Var(m; =1) = p;,,(1- p;)
Yer = HY -1 + Zy
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* These methods apply to a large number of
Big Data applications

— For example, mobile phone data

— The challenge (cost, feasibility etc.) is
availablility of ground truths/measurements

* For official statistics, there Is a role for
survey sampling even with Big Data
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